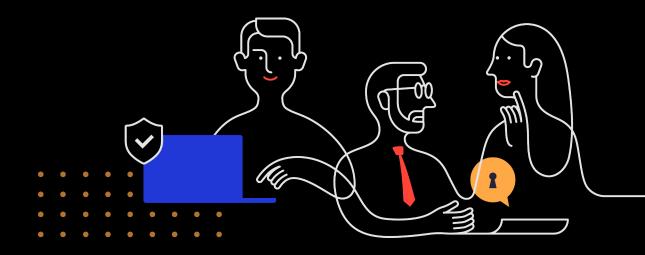


Privacy in the Era of Big Data, Machine Learning, IoT, and 5G

Elisa Bertino

Cs Department, Purdue University



Key Technologies

Increase our capacity for

-collecting and processing data

- obtaining knowledge and recommendation from data

- making devices, control systems, and cyber-physical systems intelligent and autonomous

Key Technologies - Improving Security

Health Security

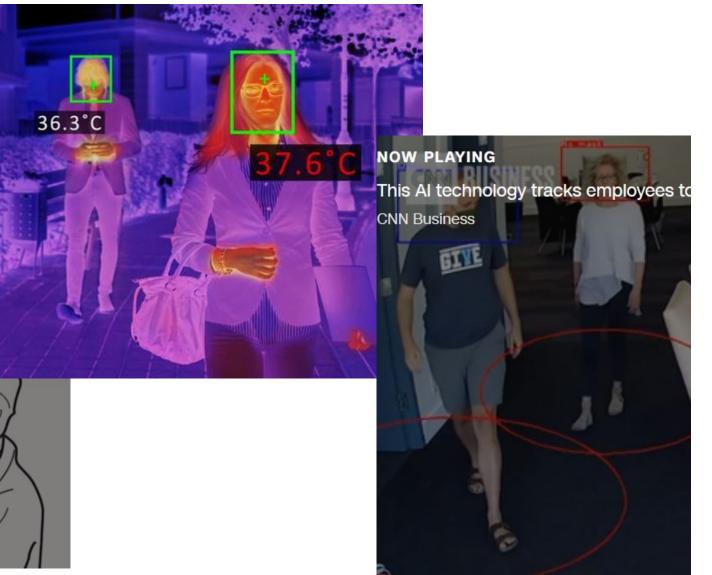
- Monitoring and prevention of disease spreading
- Evidence-based healthcare
- Cyber Security
 - Security information and event management (SIEM)
 - Authentication (biometrics, continuous user authentication, federated ID management)
 - Access control (e.g. attribute-based, location-based and context-based access control)
 - Insider threat (anomaly detection) and user monitoring
- Homeland Protection
 - Identification of links and relationships among individuals in social networks
 - Prediction of attacks
 - Management of emergencies and disasters
- Food and Water Security
 - Precision agriculture

Health Security – How IoT and AI can help

• touchless entry

Images from Forbes and CNN

- thermal temperature scanning
- managing and tracking physical interactions among individuals
- enforcing safe distancing



Privacy Threats

Cellular Networks

- Matching of mobile users to access points at the physical layer
- Traceability attacks via IMSI catching (addressed by TMSI, GUTI in 5G)
- Exploitation of paging occasions (ToRPEDO attack)

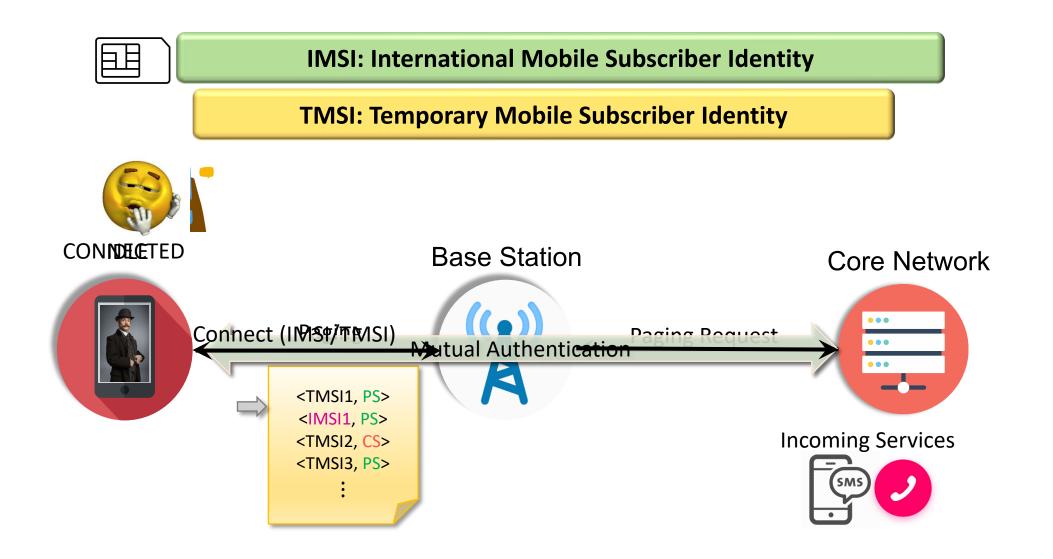
• Data

- Data linkage
- Lack of data security
- Unproper use of data

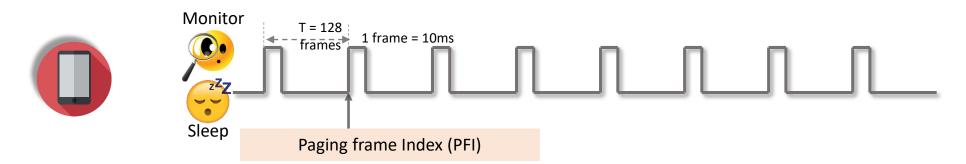
Mobile Applications

- Vulnerable mobile applications
- "Curious" mobile applications
- Al and Machine Learning
 - Inversion attacks
 - Uneven data privacy for specific subsets of users
- Wearable devices and continuous data streaming

TORPEDO ATTACK – Paging Procedure



TORPEDO ATTACK – Paging Occasion

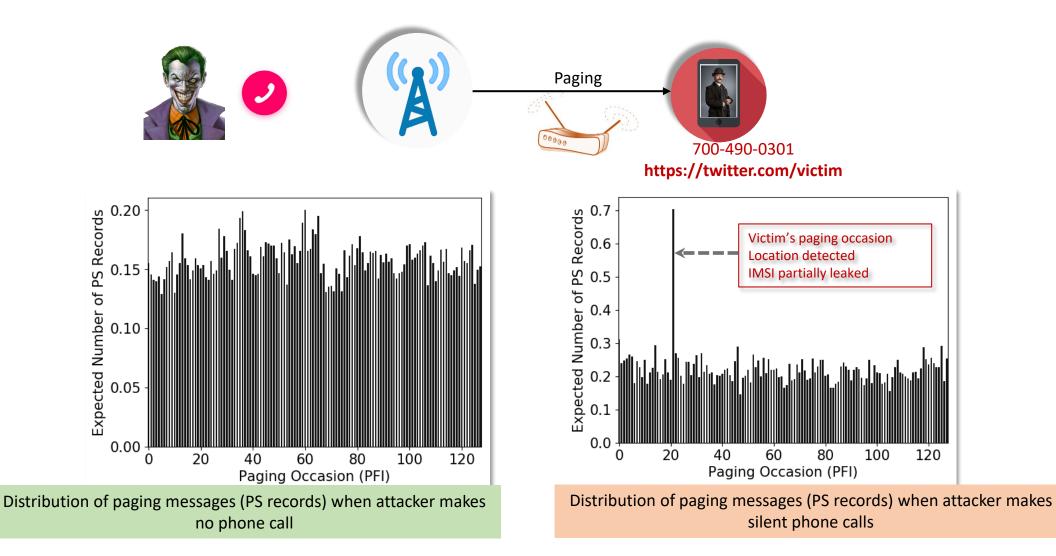


Can a passive adversary only knowing victim's phone number/Twitter handle Identify/track the victim's presence in a target area?

IMSI = 310 260 628687893 = 100011010XXX ... XXX 0001010*

IMSI = 310 260 628687765 = 100011010XXX ... XXX 0001010

ToRPEDO TRacking via Paging mEssage DistributiOn



Paging Procedure – Design Vulnerabilities

TMSI sent in plaintext and not updated frequently

Fixed paging occasion

Lack of authentication on paging messages

Data Linkage L. Sweeney'Attack (1997)

Massachusetts hospital discharge dataset

SSN	Name	Ethnicity	Date Of Birth	Sex	ZIP	Marital Status	Problem
		asian	09/27/64	9181H91	02139	divorced	hypertension
	8 3	asian	09/30/64	female	02139	divorced	obesity
		asian	04/18/64	male	02139	married	chest pain
	S 5	asian	04/15/64	male	02139	married	obesity
	8 9	black	03/13/63	male	02138	married	hypertension
		black	03/18/63	male	02138	married	shortness of breath
	S. 8	black	09/13/64	female	02141	married	shortness of breatl
		black	09/07/64	female	02141	married	obesity
	Si - S	white	05/14/61	male	02138	single	chest pain
	Q 3	white	05/08/61	male	02138	single	obesity
		white	09/15/61	female	02142	widow	shortness of breatl

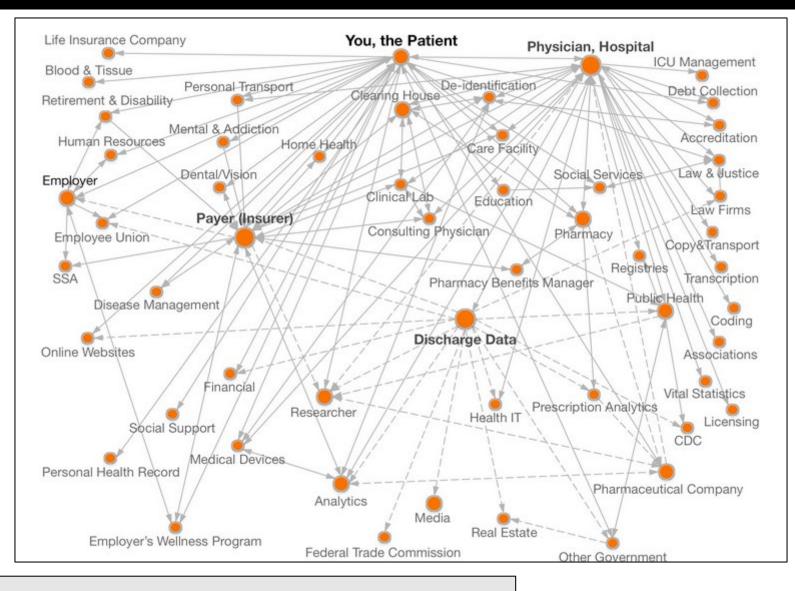
Voter List

 Party	Sex	DOB	ZIP	City	Address	Name
 democrat	female	9/15/61	02142	Cambridge	1459 Main St.	Sue J. Carlson

Figure 1: Re-identifying anonymous data by linking to external data

Public voter dataset

Where does your data go?



Map from the DataMap Project, https://thedatamap.org/

UNSECURE AND "Curious" Mobile Applications

Analysis of 13,687 apps done in 2019

of apps Certificate Validations Performed

- 1,298 Only implement one check, whether the certificates are signed by an invalid CA
- 54 Only implement two checks, whether the certificates are self-signed or signed by an invalid CA
- 131 Only implement two checks, whether the certificates are expired or signed by an invalid CA
- 934 None of the above (e.g., they do not implement any certificate verification)

Analysis of 3,303 apps using OTP in 2019

OTP Rules	# of apps
R6: OTP Renewal Interval	536
R3: Retry Attempts	324
R2: OTP Length	209
R4: OTP Consumption	106
R1: OTP Randomness	71
R5: OTP Expiration	40

Permission	Req. apps #	Req. %
READ_EXTERNAL_STORAGE	160	63.40%
WRITE_EXTERNAL_STORAGE	159	63.13%
INTERNET	156	62.07%
READ_PHONE_STATE	124	49.07%
ACCESS_NETWORK_STATE	103	41.11%
ACCESS_WIFI_STATE	69	27.19%
WRITE SETTINGS	51	20.03%
READ_CONTACTS	46	18.04%
ACCESS_FINE_LOCATION	41	16.18%
ACCESS COARSE LOCATION	36	14.46%
CHANGE_WIFI_STATE	35	14.06%
GET_ACCOUNTS	31	12.33%
CHANGE_NETWORK_STATE	29	11.27%
CALL_PHONE	26	10.34%
BLUETOOTH	24	9.42%
WRITE_CONTACTS	22	8.89%
READ_SMS	21	8.49%
CAMERA	18	7.69%
BLUETOOTH_ADMIN	18	7.29%
READ_SYNC_SETTINGS	17	7.16%

Top 20 requested sensitive permissions from the top 250 applications on Google Play – survey done in 2014

It Seems that Privacy is Long Gone

1993

2015

"Remember when, on the Internet, nobody knew who you were?"

Kaamran Hafeez' cartoon, New Yorker, Feb.2015

What can we do?

We have a lot of privacy preserving technologies!!

- Privacy-preserving data linkage techniques, protection against AI model inversion attacks, and privacy preserving AI
- Network anonymizers
- SMC, practical homomorphic encryption (see IBM recently released toolkit, June 4, 2020)
- Privacy-preserving digital identity management, including pseudonym systems
- Access control (AC) punctuations for streaming data
- Anonymous "mode" for mobile applications

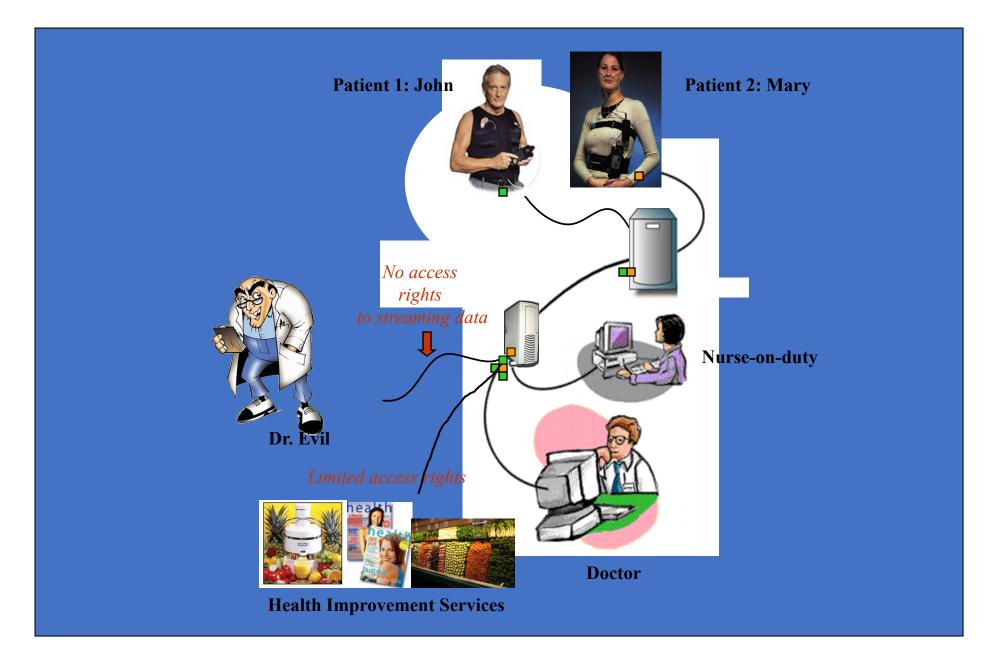
However privacy is always very personal and different individuals often have different privacy preferences

AC for Streaming data – Data Providers and Query Specifiers

Data Providers – send streaming data (objects)

Query Specifiers (subjects) – query streaming data

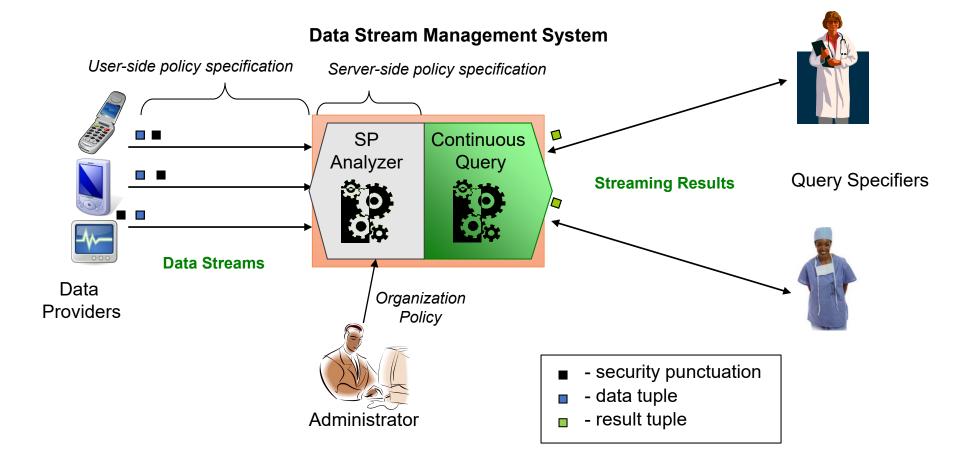
Motivating Example: Patient Monitoring



Security Punctuations (SPs) Conceptual View

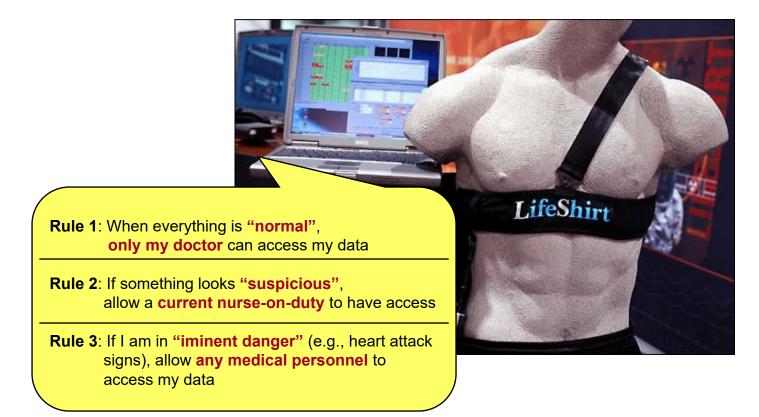
Security Punctuations:

- Metadata with security semantics
- Embedded inside data streams

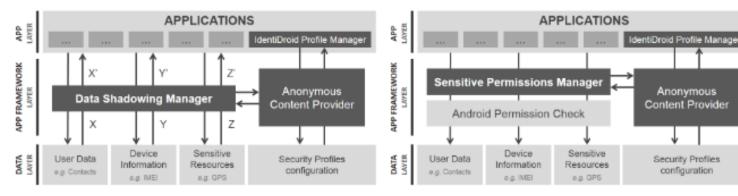


How do security punctuations get into streams?

- Users can either *manually* inject security punctuations at run-time
- Devices come pre-set with a set of rules (customizable) that dynamically adjust security settings based on user preferences
- *Machine learning* can be used to learn security punctations and/or customize rules



IdentiDroid – Anonymous "mode" for Apps



Android system components IdentiDroid components

(a) Data Shadowing Manager.

9	🚺 6T 🗰	🐨 🗜 10:18		
= -	dumm	0	۹	
Addre	sa book			
2	Dummy Test 1 1111-1111			
2	Dummy Test 2 (222) 222-2222			
	Dummy Test 3 (333) 333-3333			

(a) Skype with "read contacts" permission granted

(b) Sensitive Permission Manager.

Android system components

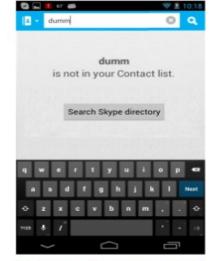
Anonymous

Content Provider

Security Profiles

configuration

IdentiDroid components



(b) Skype with "read contacts" permission revoked

Main features

- Data shadowing ۲
- Dynamic permission revocation ۲
- Fresh start feature for apps •

(a)	Fresh	Start	not	activated
-----	-------	-------	-----	-----------

(b) Fresh Start activated

So what is needed?

Combine those approaches for "**privacy protection in depth**" by developing holistic privacy-preserving environments

However a key question is "personal privacy versus collective safety".

How can we make possible for people to make their choices about this question? How can we make possible to reconcile those two seemingly opposing goals? I believe that data transparency and policy-based use of data are two key elements relevant to these issues

Questions? Thank You