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BTW

• At SIGMOD2022
• Edgar F. Codd Innovations Award Dan Suciu

• I was supervised by Dan during 2000-2001. What I learned:
• Theory to practice: automaton to XML streaming processing

• Practice to theory: engineering techniques are required to make the theory work
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My main research projects

1. Query optimization for analytical queries
• Application: Intrinsic variable discovery
• Techniques: join query optimization, materialized view selection, outlier detection 
• Partner: National Astronomical Observatory of Japan, Toshiba, Treasure data

2. Graph database (graph mining and graph query)
• Tasks: clustering, classification, link prediction, subgraph matching
• Techniques: Graph neural networks (GCN, ANEPN)
• Partner: AI samurai (patent search, patentability evaluation)

3. Data integration 
• Techniques: bidirectional transformation, distributed transactions
• Applications: Ride-sharing alliance, clinical data integration
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1. Query optimization for analytical queries 4
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Makoto Onizuka, Hiroyuki Kato, Soichiro

Hidaka, Keisuke Nakano, Zhenjiang Hu

VLDB 2014
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Overview

 OptIQ is an optimization framework for iterative 

queries

 Declarative high level language: extended SQL with 

iterations for optimization

 Two techniques for removing inefficiency

 view materialization for invariant views

 incrementalization for variant views

 We implement on MapReduce and Spark
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Running example: PageRank

This program is not efficient. Which parts?

map function shuffles 

whole graph structure 

in every iteration

scores are computed 

even if the nodes are 

converged
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“Data-Intensive Text Processing with MapReduce”
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Issues for iterative analysis

 Can we optimize the program?

 Possible but difficult to manually remove the above 

redundant computations 

 Actually, Spark, HaLoop, REX force programmers to 

manually remove them

 Our goal: Automatically remove redundant 

computations for iterative queries
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 View materialization

1. Decompose tables/views into variant/invariant tables/views

2. Materialize invariant views

 Incremental evaluation

1. Evaluate incrementally variant views

Ideas for removing inefficiency

query

initialize

return

convergence?

invariant view 
construction

initialize

return

convergence?

U = variant 
view(U)

materialized 
view

invariant view 
construction

initialize

return

convergence?

U += variant 
view(delta U)

materialized 
view
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•Up to five times faster for PageRank/k-means both in 
MapReduce/Spark 

Experiments

PageRank Computation/webbase-2001 K-means clustering/mnist8m
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Exploratory Data Analysis

• Technique for discovering interesting data that largely differ 
from ordinary/average data

• Join work with National Astronomical Observatory of Japan (NAOJ)

112022/6/16

Intrinsic variable discovery

https://www.astro.caltech.edu/~george/ay111/Djorgovski_Ay111_Jan12.pdf

Osaka was ranked at top 

in the emission of garbage 

per person in 2014

Outlier detection

Osaka 

pref.
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Application: Intrinsic variable discovery

• Problem: outlier detection from very sparse time-series data

• Approach: cluster data and make imputation for each cluster

122022/6/16

2つの恒星の例
（時間×明るさ）

Two objects

（time×brightness）

# observations is very few (few %)

Distance 

computableincomputable
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Application: Intrinsic variable discovery

• Implementation: Spark + PySpark

• Achievement
• Response time: high scalability (40mins for 240M records)

• Analysis quality: (under evaluation)

132022/6/16

Green: detected outliers
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High scalability
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Application: Intrinsic variable discovery

• Identified examples: supernova
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2.  Graph mining 15
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Big graphs everywhere

• Web graph: 10B pages in the world 

• Social graph: 3B users in Facebook

• User-item graph: 0.1B in amazon.com

16

https://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919The architecture of complexity, ASIS Keynote 2006
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Our target: graph mining

Large-scale graphs have emerged
Web graph: 10B pages in the world 
Social graph: 3B users in Facebook
User-item graph: 0.1B in amazon.com

Expensive cost of graph mining
Clustering: O 𝑁2 , 𝑁 is node size
Random walk: O 𝑚𝑡 , 𝑚 is edge size, 𝑡 is iterations

Effective techniques are demanded
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Our contributions

Graph clustering/Graph classification/Graph query
Modularity[AAAI13], SCAN[VLDB15], PPNMF[GEM19]
ANEPN[ECML21], LC transformation [ECML22]
Subgraph matching[ICDE22]

Distributed/parallel query processing
Distributed query optimization[VLDB14]
Graph ordering[IPDPS16], Graph partition[DSE17]
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What are typical tasks for graph mining?

Typical graph mining tasks
Clustering
Classification
Link prediction

19
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Graph clustering

• Identify communities based on graph structure and attributes

• Idea: Many edges in same clusters/sparse between different clusters

20

Densely connected internally

Sparsely connected 
between clusters

Clustering
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Node classification

• Predict label of nodes based on given labels of other nodes 

• Idea: Not only using node attributes, we leverage structure: node 
feature is affected by its neighbor nodes.
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Link prediction

• Predict future link between nodes

• Applications
• Friend recommendation in SNS

• Protein-protein interaction

• Item recommendation

22
https://lab.pasona.co.jp/data-operation/skill/788/

Link prediction
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Techniques for graph mining

• Representation learning/node embedding

• Graph neural networks (GNN)

2022/6/16
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Representation learning/node embedding

• Node embedding from graph space to multi-dimension space
• Obtain node feature using structure and/or attributes

• Benefit: we can utilize standard ML techniques  

• Note: adjacent nodes should be embedded into close in feature space 
(DeepWalk example)

24

Node 

embedding

Graph space multi-dimension space
2022/6/16
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Microscopic and macroscopic aspects

• We should take microscopic and macroscopic aspects in node embedding
• Microscopic (local): 1st order/2nd order proximity (friends and friends of friends) are 

useful for effective embedding

• Macroscopic (global): higher-order proximity is also useful, in particular when labeled 
nodes are few

25

2nd order proximity

Higher-order proximity

1st order proximity
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Microscopic and macroscopic aspects

• We should take microscopic and macroscopic aspects in node embedding
• Microscopic (local): 1st order/2nd order proximity (friends and friends of friends) are 

useful for effective embedding

• Macroscopic (global): higher-order proximity is also useful, in particular when labelled 
nodes are few.

• Technical trends
• 1st order proximity: Spectral clustering (NIPS2001)

• 2nd order proximity: SCAN clustering (KDD2007)

• 1st +2nd order proximities: SDNE(KDD2016), GCN (ICLR2017), SEAL

• microscopic + mesoscopic: M-NMF (regularized with modularity)

• microscopic + macroscopic: node2vec, ALaGCN, ANEPN

26
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GCN (Graph Convolutional Networks), ICLR2017

• GCN is designed for graph classification
• Loss: classification loss + 1st order proximity loss (𝑓 is a neural projection)

• Design: learn graph neural network(𝑓)to minimize classification loss ℒ0
• ℒreg is implemented as graph convolution operation 𝑓, which update node feature by 

aggregating features its neighbors (repeating 𝑘-layer).

• 2-layer GCN performs best in general

27

Adjacency matrix 1st order proximity loss on node 𝑖 and 𝑗

2022/6/16Summer school on Big Data and security monitoring



GCN: Graph Convolutional Networks [1]

▣ GCNs typically are used as two-layer neural networks.

▣ They utilize graph structure within two-hops by propagating 

node attributes and embeddings.

28[1] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017) 



Adaptive Node Embedding Propagation 

for Semi-Supervised Classification

(ECML/PKDD 2021)

Yuya Ogawa*, Seiji Maekawa*, Yuya Sasaki*, 

Yasuhiro Fujiwara**, Makoto Onizuka* 

* Osaka University

**NTT Communication Science Laboratories



ANEPN, ECML/PKDD2021

▣ GCN does not work well for semi-supervised learning setting
□ 2-layer GCN does not propagate information enough to all nodes.

□ Many-layer GCN suffers from overfitting and over-smoothing

▣ Key observation:
□ Layer size is tightly coupled with # convolutions and model’s expressive power

▣ Our Idea: separate #convolutions from layer size

□ We recover 1st order proximity to the loss function and repeat propagation many 

times using 2-layer GCN

□ We introduce anti-proximity loss to keep distant nodes to have different 

embedding features

□ We choose an appropriate number of propagations based on cluster coefficient

30
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Architecture and loss of ANEPN

ANEPN uses two-layer neural network

Its loss consists of three losses (Embedding Propagation Loss        , 

Anti-Smoothness Loss          ,  Cross Entropy Loss       ) 

31

Z : node embedding

X : preprocessed     

attributes

W : weight matrix

B : bias matrix

Y : predicted labels

α : coefficient 

1st order proximity loss Anti-proximity loss (distant nodes) Classification loss



Training of ANEPN
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Results of classification accuracy

▣ ANEPN outperforms existing approaches.

▣ ANEPN achieves larger performance gains under low label rate. 
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Summary

• Query optimization for analytical queries
• Iterative query optimization on MapReduce/Spark

• Isolation forest on Spark for Intrinsic variable discovery

• Graph mining
• Tasks: clustering, classification, link prediction, subgraph matching

• Techniques: Graph neural networks (GCN, ANEPN)

34
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