
Analytical query optimization:
distributed processing, graph mining,
and applications

Osaka University

Prof. Makoto Onizuka (oni@acm.org)

Real time big data

processing

Parallel/distributed

Mining knowledge from

item/person/place

Graph mining

Techniques

演繹学習と機能学習を統合

してAIを実現する

機械学習

Social graph analysis Trend analysis

Applications

Route recommendation

1

2022/6/16Summer school on Big Data and security monitoring

mailto:oni@acm.org

BTW

• At SIGMOD2022
• Edgar F. Codd Innovations Award Dan Suciu

• I was supervised by Dan during 2000-2001. What I learned:
• Theory to practice: automaton to XML streaming processing

• Practice to theory: engineering techniques are required to make the theory work

2

2022/6/16Summer school on Big Data and security monitoring

My main research projects

1. Query optimization for analytical queries
• Application: Intrinsic variable discovery
• Techniques: join query optimization, materialized view selection, outlier detection
• Partner: National Astronomical Observatory of Japan, Toshiba, Treasure data

2. Graph database (graph mining and graph query)
• Tasks: clustering, classification, link prediction, subgraph matching
• Techniques: Graph neural networks (GCN, ANEPN)
• Partner: AI samurai (patent search, patentability evaluation)

3. Data integration
• Techniques: bidirectional transformation, distributed transactions
• Applications: Ride-sharing alliance, clinical data integration

3

2022/6/16Summer school on Big Data and security monitoring

1. Query optimization for analytical queries 4

2022/6/16Summer school on Big Data and security monitoring

Makoto Onizuka, Hiroyuki Kato, Soichiro

Hidaka, Keisuke Nakano, Zhenjiang Hu

VLDB 2014

52022/6/16

Summer school on Big Data and security

monitoring

https://www.researchgate.net/researcher/2048448041_Makoto_Onizuka
https://www.researchgate.net/researcher/8316030_Hiroyuki_Kato
https://www.researchgate.net/researcher/32613720_Soichiro_Hidaka
https://www.researchgate.net/researcher/9033850_Keisuke_Nakano
https://www.researchgate.net/researcher/6988374_Zhenjiang_Hu

Overview

 OptIQ is an optimization framework for iterative

queries

 Declarative high level language: extended SQL with

iterations for optimization

 Two techniques for removing inefficiency

 view materialization for invariant views

 incrementalization for variant views

 We implement on MapReduce and Spark

62022/6/16 Summer school on Big Data and security monitoring

Running example: PageRank

This program is not efficient. Which parts?

map function shuffles

whole graph structure

in every iteration

scores are computed

even if the nodes are

converged

72022/6/16

“Data-Intensive Text Processing with MapReduce”

Summer school on Big Data and security monitoring

Issues for iterative analysis

 Can we optimize the program?

 Possible but difficult to manually remove the above

redundant computations

 Actually, Spark, HaLoop, REX force programmers to

manually remove them

 Our goal: Automatically remove redundant

computations for iterative queries

82022/6/16 Summer school on Big Data and security monitoring

 View materialization

1. Decompose tables/views into variant/invariant tables/views

2. Materialize invariant views

 Incremental evaluation

1. Evaluate incrementally variant views

Ideas for removing inefficiency

query

initialize

return

convergence?

invariant view
construction

initialize

return

convergence?

U = variant
view(U)

materialized
view

invariant view
construction

initialize

return

convergence?

U += variant
view(delta U)

materialized
view

92022/6/16 Summer school on Big Data and security monitoring

•Up to five times faster for PageRank/k-means both in
MapReduce/Spark

Experiments

PageRank Computation/webbase-2001 K-means clustering/mnist8m

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 1011121314151617

re
sp

o
n
se

 t
im

e
 (

m
in

)

of iterations

default

view

view + incremental

0

5

10

15

20

25

1 11 21 31 41 51 61 71

re
sp

o
n
se

 t
im

e
 (

m
in

)

of iterations

default

view

view + incremental

102022/6/16 Summer school on Big Data and security monitoring

Exploratory Data Analysis

• Technique for discovering interesting data that largely differ
from ordinary/average data

• Join work with National Astronomical Observatory of Japan (NAOJ)

112022/6/16

Intrinsic variable discovery

https://www.astro.caltech.edu/~george/ay111/Djorgovski_Ay111_Jan12.pdf

Osaka was ranked at top

in the emission of garbage

per person in 2014

Outlier detection

Osaka

pref.

Summer school on Big Data and security monitoring

https://www.astro.caltech.edu/~george/ay111/Djorgovski_Ay111_Jan12.pdf

Application: Intrinsic variable discovery

• Problem: outlier detection from very sparse time-series data

• Approach: cluster data and make imputation for each cluster

122022/6/16

2つの恒星の例
（時間×明るさ）

Two objects

（time×brightness）

observations is very few (few %)

Distance

computableincomputable

Summer school on Big Data and security monitoring

Application: Intrinsic variable discovery

• Implementation: Spark + PySpark

• Achievement
• Response time: high scalability (40mins for 240M records)

• Analysis quality: (under evaluation)

132022/6/16

Green: detected outliers

magnitude（brightness）

Standard

deviation

objects

Execution time

(min)

High scalability

Summer school on Big Data and security monitoring

Application: Intrinsic variable discovery

• Identified examples: supernova

142022/6/16

18

18.5

19

19.5

20

56600 56800 57000 57200 57400 57600 57800 58000

Summer school on Big Data and security monitoring

2. Graph mining 15

2022/6/16Summer school on Big Data and security monitoring

Big graphs everywhere

• Web graph: 10B pages in the world

• Social graph: 3B users in Facebook

• User-item graph: 0.1B in amazon.com

16

https://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919The architecture of complexity, ASIS Keynote 2006

2022/6/16Summer school on Big Data and security monitoring

Our target: graph mining

Large-scale graphs have emerged
Web graph: 10B pages in the world
Social graph: 3B users in Facebook
User-item graph: 0.1B in amazon.com

Expensive cost of graph mining
Clustering: O 𝑁2 , 𝑁 is node size
Random walk: O 𝑚𝑡 , 𝑚 is edge size, 𝑡 is iterations

Effective techniques are demanded

17

2022/6/16Summer school on Big Data and security monitoring

Our contributions

Graph clustering/Graph classification/Graph query
Modularity[AAAI13], SCAN[VLDB15], PPNMF[GEM19]
ANEPN[ECML21], LC transformation [ECML22]
Subgraph matching[ICDE22]

Distributed/parallel query processing
Distributed query optimization[VLDB14]
Graph ordering[IPDPS16], Graph partition[DSE17]

18

2022/6/16Summer school on Big Data and security monitoring

What are typical tasks for graph mining?

Typical graph mining tasks
Clustering
Classification
Link prediction

19

2022/6/16Summer school on Big Data and security monitoring

Graph clustering

• Identify communities based on graph structure and attributes

• Idea: Many edges in same clusters/sparse between different clusters

20

Densely connected internally

Sparsely connected
between clusters

Clustering

2022/6/16Summer school on Big Data and security monitoring

Node classification

• Predict label of nodes based on given labels of other nodes

• Idea: Not only using node attributes, we leverage structure: node
feature is affected by its neighbor nodes.

21

2022/6/16Summer school on Big Data and security monitoring

Link prediction

• Predict future link between nodes

• Applications
• Friend recommendation in SNS

• Protein-protein interaction

• Item recommendation

22
https://lab.pasona.co.jp/data-operation/skill/788/

Link prediction

2022/6/16Summer school on Big Data and security monitoring

Techniques for graph mining

• Representation learning/node embedding

• Graph neural networks (GNN)

2022/6/16

23

Summer school on Big Data and security monitoring

Representation learning/node embedding

• Node embedding from graph space to multi-dimension space
• Obtain node feature using structure and/or attributes

• Benefit: we can utilize standard ML techniques

• Note: adjacent nodes should be embedded into close in feature space
(DeepWalk example)

24

Node

embedding

Graph space multi-dimension space
2022/6/16

Summer school on Big Data and security monitoring

Microscopic and macroscopic aspects

• We should take microscopic and macroscopic aspects in node embedding
• Microscopic (local): 1st order/2nd order proximity (friends and friends of friends) are

useful for effective embedding

• Macroscopic (global): higher-order proximity is also useful, in particular when labeled
nodes are few

25

2nd order proximity

Higher-order proximity

1st order proximity

2022/6/16Summer school on Big Data and security monitoring

Microscopic and macroscopic aspects

• We should take microscopic and macroscopic aspects in node embedding
• Microscopic (local): 1st order/2nd order proximity (friends and friends of friends) are

useful for effective embedding

• Macroscopic (global): higher-order proximity is also useful, in particular when labelled
nodes are few.

• Technical trends
• 1st order proximity: Spectral clustering (NIPS2001)

• 2nd order proximity: SCAN clustering (KDD2007)

• 1st +2nd order proximities: SDNE(KDD2016), GCN (ICLR2017), SEAL

• microscopic + mesoscopic: M-NMF (regularized with modularity)

• microscopic + macroscopic: node2vec, ALaGCN, ANEPN

26

2022/6/16Summer school on Big Data and security monitoring

GCN (Graph Convolutional Networks), ICLR2017

• GCN is designed for graph classification
• Loss: classification loss + 1st order proximity loss (𝑓 is a neural projection)

• Design: learn graph neural network(𝑓)to minimize classification loss ℒ0
• ℒreg is implemented as graph convolution operation 𝑓, which update node feature by

aggregating features its neighbors (repeating 𝑘-layer).

• 2-layer GCN performs best in general

27

Adjacency matrix 1st order proximity loss on node 𝑖 and 𝑗

2022/6/16Summer school on Big Data and security monitoring

GCN: Graph Convolutional Networks [1]

▣ GCNs typically are used as two-layer neural networks.

▣ They utilize graph structure within two-hops by propagating

node attributes and embeddings.

28[1] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

Adaptive Node Embedding Propagation

for Semi-Supervised Classification

(ECML/PKDD 2021)

Yuya Ogawa*, Seiji Maekawa*, Yuya Sasaki*,

Yasuhiro Fujiwara**, Makoto Onizuka*

* Osaka University

**NTT Communication Science Laboratories

ANEPN, ECML/PKDD2021

▣ GCN does not work well for semi-supervised learning setting
□ 2-layer GCN does not propagate information enough to all nodes.

□ Many-layer GCN suffers from overfitting and over-smoothing

▣ Key observation:
□ Layer size is tightly coupled with # convolutions and model’s expressive power

▣ Our Idea: separate #convolutions from layer size

□ We recover 1st order proximity to the loss function and repeat propagation many

times using 2-layer GCN

□ We introduce anti-proximity loss to keep distant nodes to have different

embedding features

□ We choose an appropriate number of propagations based on cluster coefficient

30

2022/6/16Summer school on Big Data and security monitoring

Architecture and loss of ANEPN

ANEPN uses two-layer neural network

Its loss consists of three losses (Embedding Propagation Loss ,

Anti-Smoothness Loss , Cross Entropy Loss)

31

Z : node embedding

X : preprocessed

attributes

W : weight matrix

B : bias matrix

Y : predicted labels

α : coefficient

1st order proximity loss Anti-proximity loss (distant nodes) Classification loss

Training of ANEPN

32

Results of classification accuracy

▣ ANEPN outperforms existing approaches.

▣ ANEPN achieves larger performance gains under low label rate.

33

Summary

• Query optimization for analytical queries
• Iterative query optimization on MapReduce/Spark

• Isolation forest on Spark for Intrinsic variable discovery

• Graph mining
• Tasks: clustering, classification, link prediction, subgraph matching

• Techniques: Graph neural networks (GCN, ANEPN)

34

2022/6/16Summer school on Big Data and security monitoring

References

• Ryuichi Ito, Chuan Xiao, Makoto Onizuka, Robust Cardinality Estimator by Non-Autoregressive
Model. SFDI 2021

• Yuya Ogawa, Seiji Maekawa, Yuya Sasaki, Yasuhiro Fujiwara, Makoto Onizuka: Adaptive Node
Embedding Propagation for Semi-supervised Classification. ECML/PKDD 2021

• Daichi Amagata, Makoto Onizuka, Takahiro Hara: Fast and Exact Outlier Detection in Metric
Spaces: A Proximity Graph-based Approach. SIGMOD Conference 2021: 36-48

• Seiji Maekawa, Yuya Sasaki, George Fletcher, Makoto Onizuka: GenCAT: Generating Attributed
Graphs with Controlled Relationships between Classes, Attributes, and Topology. CoRR
abs/2109.04639 (2021)

• Seiji Maekawa, Koh Takeuchi, Makoto Onizuka: New Attributed Graph Clustering by Bridging
Attribute and Topology Spaces. J. Inf. Process. 28: 427-435 (2020)

• Yuya Ogawa, Koh Takeuchi, Yuya Sasaki, Makoto Onizuka: Proximity Preserving Nonnegative
Matrix Factorization. J. Inf. Process. 28: 445-452 (2020)

• Faith W. Mutinda, Atsuhiro Nakashima, Koh Takeuchi, Yuya Sasaki, Makoto Onizuka: Time
Series Link Prediction Using NMF. J. Inf. Process. 27: 752-761 (2019)

2022/6/16

35

Summer school on Big Data and security monitoring

http://www.biscuits.work/fifth-workshop/proceedings/paper_2.pdf
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_662.pdf
https://arxiv.org/abs/2110.08959
https://arxiv.org/abs/2109.04639
https://www.jstage.jst.go.jp/article/ipsjjip/28/0/28_427/_article/-char/ja/
https://www.jstage.jst.go.jp/article/ipsjjip/28/0/28_445/_article/-char/en
https://www.jstage.jst.go.jp/article/ipsjjip/27/0/27_752/_article/-char/ja/

