Techniques

Analytical query optimization: distributed processing, graph mining, and applications

Osaka University Prof. Makoto Onizuka (<u>oni@acm.org</u>)

Summer school on Big Data and security monitoring Onizuka-Lab.

BTW

At SIGMOD2022

Edgar F. Codd Innovations Award Dan Suciu

• I was supervised by Dan during 2000-2001. What I learned:

- Theory to practice: automaton to XML streaming processing
- Practice to theory: engineering techniques are required to make the theory work

My main research projects

3

1. Query optimization for analytical queries

- Application: Intrinsic variable discovery
- Techniques: join query optimization, materialized view selection, outlier detection
- Partner: National Astronomical Observatory of Japan, Toshiba, Treasure data
- 2. Graph database (graph mining and graph query)
 - Tasks: clustering, classification, link prediction, subgraph matching
 - Techniques: Graph neural networks (GCN, ANEPN)
 - Partner: AI samurai (patent search, patentability evaluation)
- 3. Data integration
 - Techniques: bidirectional transformation, distributed transactions
 - Applications: Ride-sharing alliance, clinical data integration

1. Query optimization for analytical queries

Summer school on Big Data and security monitoring

2022/6/16

OPTIMIZATION FOR ITERATIVE QUERIES ON MAPREDUCE

Makoto Onizuka, Hiroyuki Kato, Soichiro Hidaka, Keisuke Nakano, Zhenjiang Hu VLDB 2014

Summer school on Big Data and security

monitoring

Overview

 OptIQ is an optimization framework for iterative queries

- Declarative high level language: extended SQL with iterations for optimization
- Two techniques for removing inefficiency
 - view materialization for invariant views
 - incrementalization for variant views
- We implement on MapReduce and Spark

"Data-Intensive Text Processing with MapReduce"

Running example: PageRank

This program is not efficient. Which parts?

```
1: class Mapper
     method Map(nid n; node N)
2:
        p ← N.PageRank/|N.AdjacencyList|
3:
        Emit(nid n, N) 📈 Pass along graph structure
4:
        for all nodeid m \in \mathbb{N}. diacencyList do
5:
          Emit(nid m, p) // Pass reeRank mass to neighbors
6:
                                              map function shuffles
    class Reducer
1:
                                              whole graph structure
      method Reduce(nid_m, [p1,p2,...])
2:
                                                in every iteration
3:
        M \leftarrow \phi
         for all p \in \text{counts } [p1, p2, \dots]
                                              scores are computed
4:
           if IsNode(p) then
5:
                                              even if the nodes are
             M \leftarrow p // Recover graph sti
6:
                                                   converged
7:
           else
             s <-- s + p // Sum incoming PageRank contributions
8:
         M.PageRank \leftarrow s
9:
         Emit(nid m, node M)
10:
```

Summer school on Big Data and security monitoring

Issues for iterative analysis

- Can we optimize the program?
- Possible but difficult to manually remove the above redundant computations
 - Actually, Spark, HaLoop, REX force programmers to manually remove them

 Our goal: Automatically remove redundant computations for iterative queries

Ideas for removing inefficiency

- View materialization
 - 1. Decompose tables/views into variant/invariant tables/views
 - 2. Materialize invariant views
- Incremental evaluation
 - 1. Evaluate incrementally variant views

Experiments

 Up to five times faster for PageRank/k-means both in MapReduce/Spark

Summer school on Big Data and security monitoring

Exploratory Data Analysis

- Technique for discovering interesting data that largely differ from ordinary/average data
 - Join work with National Astronomical Observatory of Japan (NAOJ)

Intrinsic variable discovery **Time Domain: A Broad Variety of Phenomena**

Flaring stars

Supernovae

202: Gamma-Ray Bursts Gravitational Microlensing Summerin Schophon Big Data https://www.astro.caltech.edu/~george/ay111/Djorgovski Ay111 Jan12.pdf Outlier detection

Osaka was ranked at top in the emission of garbage per person in 2014

Application: Intrinsic variable discovery

- Problem: outlier detection from very sparse time-series data
- Approach: cluster data and make imputation for each cluster

Application: Intrinsic variable discovery

- Implementation: Spark + PySpark
- Achievement
 - Response time: high scalability (40mins for 240M records)
 - Analysis quality: (under evaluation)

Application: Intrinsic variable discovery

Identified examples: supernova

2. Graph mining

15

Summer school on Big Data and security monitoring

Big graphs everywhere

16

2022/6/16

- Web graph: 10B pages in the world
- Social graph: 3B users in Facebook
- User-item graph: 0.1B in amazon.com

Summer school on Big Data and security monitoring The architecture of complexity, ASIS Keynote 2006

https://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919

Our target: graph mining

17

Large-scale graphs have emerged
 Web graph: 10B pages in the world
 Social graph: 3B users in Facebook
 User-item graph: 0.1B in amazon.com
 Expensive cost of graph mining
 Clustering: O(N²), N is node size
 Random walk: O(mt), m is edge size, t is iterations

Effective techniques are demanded

Our contributions

18

Graph clustering/Graph classification/Graph query
 Modularity [AAAI13], SCAN [VLDB15], PPNMF [GEM19]
 ANEPN [ECML21], LC transformation [ECML22]
 Subgraph matching [ICDE22]
 Distributed/parallel query processing
 Distributed query optimization [VLDB14]
 Graph ordering [IPDPS16], Graph partition [DSE17]

What are typical tasks for graph mining?

Typical graph mining tasks Clustering Classification Link prediction

Graph clustering

- Identify communities based on graph structure and attributes
- Idea: Many edges in same clusters/sparse between different clusters

Summer school on Big Data and security monitoring

Node classification

- Predict label of nodes based on given labels of other nodes
- Idea: Not only using node attributes, we leverage structure: node feature is affected by its neighbor nodes.

Link prediction

https://lab.pasona.co.jp/data-operation/skill/788/

- Predict future link between nodes
- Applications
 - Friend recommendation in SNS
 - Protein-protein interaction
 - Item recommendation

Techniques for graph mining

- Representation learning/node embedding
- Graph neural networks (GNN)

Representation learning/node embedding

Node embedding from graph space to multi-dimension space

- Obtain node feature using structure and/or attributes
- Benefit: we can utilize standard ML techniques
- Note: adjacent nodes should be embedded into close in feature space (DeepWalk example)

Summer school on Big Data and security monitoring

24

2022/6/16

Microscopic and macroscopic aspects

2022/6/16

• We should take microscopic and macroscopic aspects in node embedding

- Microscopic (local): 1st order/2nd order proximity (friends and friends of friends) are useful for effective embedding
- Macroscopic (global) : higher-order proximity is also useful, in particular when labeled nodes are few

Microscopic and macroscopic aspects

26

• We should take microscopic and macroscopic aspects in node embedding

- Microscopic (local): 1st order/2nd order proximity (friends and friends of friends) are useful for effective embedding
- Macroscopic (global) : higher-order proximity is also useful, in particular when labelled nodes are few.

• Technical trends

- 1st order proximity: Spectral clustering (NIPS2001)
- 2nd order proximity: SCAN clustering (KDD2007)
- 1st +2nd order proximities: SDNE (KDD2016), GCN (ICLR2017), SEAL
- microscopic + mesoscopic: M-NMF (regularized with modularity)
- microscopic + macroscopic: node2vec, ALaGCN, ANEPN

GCN (Graph Convolutional Networks), ICLR2017

27

Semi-Supervised Classification with Graph Convolutional ...

Cite as: arXiv:1609.02907

by TN Kipf \cdot 2016 \cdot Cited by 15427 — We present a scalable approach for semi-supervised learning on **graph**-structured data that is based on an efficient variant of convolutional ...

• GCN is designed for graph classification

• Loss: classification loss + 1^{st} order proximity loss (f is a neural projection)

Adjacency matrix
$$1^{\text{st}}$$
 order proximity loss on node i and j
 $\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{\text{reg}}$, with $\mathcal{L}_{\text{reg}} = \sum_{i,j} A_{ij} \|f(X_i) - f(X_j)\|^2 = f(X)^\top \Delta f(X)$.

- Design: learn graph neural network (f) to minimize classification loss \mathcal{L}_0
 - L_{reg} is implemented as graph convolution operation f, which update node feature by aggregating features its neighbors (repeating k-layer).
 - 2-layer GCN performs best in general

GCN: Graph Convolutional Networks [1]

GCNs typically are used as two-layer neural networks.
 They utilize graph structure within two-hops by propagating node attributes and embeddings.

Adaptive Node Embedding Propagation for Semi-Supervised Classification (ECML/PKDD 2021)

<u>Yuya Ogawa*, Seiji Maekawa*, Yuya Sasaki*,</u> Yasuhiro Fujiwara**, Makoto Onizuka*

* Osaka University **NTT Communication Science Laboratories

ANEPN, ECML/PKDD2021

GCN does not work well for semi-supervised learning setting
 2-layer GCN does not propagate information enough to all nodes.
 Many-layer GCN suffers from overfitting and over-smoothing

Key observation:

Layer size is tightly coupled with # convolutions and model's expressive power

Our Idea: separate #convolutions from layer size

- We recover 1st order proximity to the loss function and repeat propagation many times using 2-layer GCN
- We introduce anti-proximity loss to keep distant nodes to have different embedding features

We choose an appropriate number of propagations based on cluster coefficient

Architecture and loss of ANEPN

ANEPN uses two-layer neural network

$$Z = \bar{X}W^{(0)} + B^{(0)}$$
$$Y = softmax(ZW^{(1)} + B^{(1)})$$

Z : node embedding
X : preprocessed attributes
W : weight matrix
B : bias matrix
Y : predicted labels

Its loss consists of three losses (Embedding Propagation Loss L_{ep} , Anti-Smoothness Loss L_{asm} , Cross Entropy Loss L_{ce})

1st order proximity loss Anti-proximity loss (distant nodes) Classification loss
$$L = \alpha L_{ep}(Z) + \alpha L_{asm}(Z) + L_{ce}(Y) \qquad \alpha : \text{coefficient}$$

Training of ANEPN

Results of classification accuracy

ANEPN outperforms existing approaches.

ANEPN achieves larger performance gains under low label rate.

	Cora					Citeseer					Pubmed		
Label rate	0.5%	1%	2%	3%	4%	0.5%	1%	2%	3%	4%	0.03%	0.05%	0.1%
LP	54.3	60.1	64.0	65.3	66.5	37.7	42.0	44.2	45.7	46.3	58.6	61.9	66.9
GCN	44.5	59.8	68.7	74.4	77.0	43.6	47.4	61.7	66.8	68.6	45.6	55.0	64.9
GAT	41.1	50.2	54.2	60.3	77.0	40.1	46.2	62.8	67.0	68.7	50.2	53.0	60.5
Self-training	55.4	62.5	73.0	76.4	79.1	48.4	59.5	65.4	66.0	70.2	58.7	59.2	66.6
Co-training	50.1	60.3	69.5	76.2	77.8	39.5	53.2	63.5	66.6	69.8	53.3	59.2	63.4
Union	45.7	57.3	72.5	76.3	77.2	41.2	52.9	62.7	65.6	68.1	47.2	59.1	66.3
Intersection	48.7	60.9	73.0	77.3	79.8	49.1	60.1	63.7	68.3	69.4	49.2	54.1	69.7
M3S	59.9	66.7	75.8	77.4	79.2	54.2	62.7	66.2	69.8	70.4	57.0	62.9	68.4
ALaGCN	57.9	66.7	73.7	74.6	78.5	41.0	49.7	59.3	63.5	67.2	57.1	63.0	71.4
ALaGAT	48.2	62.4	73.5	75.0	77.3	38.4	52.3	58.6	66.7	68.4	56.8	62.4	69.3
ANEPN (ours)	66.1	73.2	77.6	78.3	79.9	60.5	64.8	68.8	70.5	71.0	60.8	69.5	71.4
Gain-GCN	+21.6	+13.4	+8.9	+3.9	+2.9	+16.9	+17.4	+7.1	+3.7	+2.4	+15.2	+14.5	+6.5
Gain-SOTA	+6.2	+6.5	+1.8	+0.9	+0.1	+6.3	+2.1	+2.6	+0.7	+0.6	+2.1	+6.5	+0.0

Summary

• Query optimization for analytical queries

- Iterative query optimization on MapReduce/Spark
- Isolation forest on Spark for Intrinsic variable discovery

• Graph mining

- Tasks: clustering, classification, link prediction, subgraph matching
- Techniques: Graph neural networks (GCN, ANEPN)

References

- Ryuichi Ito, Chuan Xiao, Makoto Onizuka, <u>Robust Cardinality Estimator by Non-Autoregressive</u> <u>Model</u>. SFDI 2021
- Yuya Ogawa, Seiji Maekawa, Yuya Sasaki, Yasuhiro Fujiwara, Makoto Onizuka: <u>Adaptive Node</u> <u>Embedding Propagation for Semi-supervised Classification</u>. ECML/PKDD 2021
- Daichi Amagata, Makoto Onizuka, Takahiro Hara: <u>Fast and Exact Outlier Detection in Metric</u> <u>Spaces: A Proximity Graph-based Approach</u>. SIGMOD Conference 2021: 36-48
- Seiji Maekawa, Yuya Sasaki, George Fletcher, Makoto Onizuka: <u>GenCAT: Generating Attributed</u> <u>Graphs with Controlled Relationships between Classes, Attributes, and Topology</u>. CoRR abs/2109.04639 (2021)
- Seiji Maekawa, Koh Takeuchi, Makoto Onizuka: <u>New Attributed Graph Clustering by Bridging</u> <u>Attribute and Topology Spaces</u>. J. Inf. Process. 28: 427-435 (2020)
- Yuya Ogawa, Koh Takeuchi, Yuya Sasaki, Makoto Onizuka: Proximity Preserving Nonnegative Matrix Factorization. J. Inf. Process. 28: 445-452 (2020)
- Faith W. Mutinda, Atsuhiro Nakashima, Koh Takeuchi, Yuya Sasaki, Makoto Onizuka: <u>Time</u> <u>Series Link Prediction Using NMF.</u> J. Inf. Process. 27: 752-761 (2019)

Summer school on Big Data and security monitoring